Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 884059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711963

RESUMO

The improvement of the antioxidant and antimicrobial activities of chitosan (CS) films can be realized by incorporating transition metal complexes as active components. In this context, bioactive films were prepared by embedding a newly synthesized acylpyrazolonate Zn(II) complex, [Zn(QPhtBu)2(MeOH)2], into the eco-friendly biopolymer CS matrix. Homogeneous, amorphous, flexible, and transparent CS@Znn films were obtained through the solvent casting method in dilute acidic solution, using different weight ratios of the Zn(II) complex to CS and characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR), Raman, and scanning electron microscopy (SEM) techniques. The X-ray single-crystal analysis of [Zn(QPhtBu)2(MeOH)2] and the evaluation of its intermolecular interactions with a protonated glucosamine fragment through hydrogen bond propensity (HBP) calculations are reported. The effects of the different contents of the [Zn(QPhtBu)2(MeOH)2] complex on the CS biological proprieties have been evaluated, proving that the new CS@Znn films show an improved antioxidant activity, tested according to the DPPH method, with respect to pure CS, related to the concentration of the incorporated Zn(II) complex. Finally, the CS@Znn films were tried out as antimicrobial agents, showing an increase in antimicrobial activity against Gram-positive bacteria (Staphylococcus aureus) with respect to pure CS, when detected by the agar disk-diffusion method.

2.
Chempluschem ; 85(3): 426-440, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32154993

RESUMO

Ag(I)-containing ethylcellulose (EC) films suitable as antbacterial packaging materials have been prepared and fully characterized. Different preparation methods, including the use of green casting solvents, are proposed. The Ag(I) acylpyrazolonato complexes, [Ag(Qpy,CF3 )(L)], L=benzylimidazole (Bzim) and L=ethylimidazole (EtimH), used as active additives, display different modes of interactions with EC, depending on their structural features. A thorough investigation of the EC liquid-crystalline lyotropic phase and its changes with the introduction of silver additives, has been conducted, revealing either the inclusion of complex molecules into the inner structure of the EC matrix or their dispersion on its surface. Moreover, the bactericidal activity of the prepared Ag(I) films seems to be related to the interaction between silver additives and the polymeric EC matrix. Indeed, the EC-2b films show a particularly good performance even with a low silver content, with a relative bacterial killing of about 100 %. Tests for Ag(I) migration have been performed by using three food stimulants under two assay conditions. Low values of silver release are recorded, particularly at low concentration of silver content, in the case of all new prepared Ag(I) films.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...